Zn-based Batteries

Sanjoy Banerjee

Executive Chairman CUNY Distinguished Professor,

Urban Electric Power, Inc. Director, The Energy Institute

Pearl River, New York The City College of New York

Sanjoy@urbanelectricpower.com Banerjee@ccny.cuny.edu

Long Duration Energy Storage Workshop: Battery Storage
March 9-10, 2021

Long Duration Energy Storage Workshop: Battery Storage Panel Zn-based Batteries

Zinc already provides long-duration storage in the form of primary cells: sales of \$13B/year

Where are we today?

- Zn Primary cell sales ~ \$13B/yr growing
- Li-ion sales ~\$40B/yr growing
- Lead-Acid sales~\$38B/yr stable
- Other battery sales (NiCd, NiMH, Flow batteries, NAS, ...) ~\$1.5B/yr decreasing

Why Zn for Electrochemical Energy Storage? (theoretical capacity assumed for metal-air cells)

Electricity generated by Niagara Falls: 60,000 MWh/day

Energy dense

Inexpensive

Metal volume to store the electricity generated by Niagara Falls/day

GHG emissions from battery production to store electricity from Niagara Falls/day

The Zinc Cycle: Can Serve Multiple Duration Time Scales

	Time Scales	Battery	RTE	Cycles
Seasonal	Years → Months	Zn-Air	70%	Tens
Long duration	Months → Days	Zn-Air, Zn-MnO ₂	70%, 76%	Hundreds
Intermediate duration	Days → Hours	Zn-MnO ₂ , Zn-Ni	76%, 96%	Thousands
Short duration	Hours → Minutes	Zn-MnO ₂ , Zn-Ni	76%, 96%	Tens of thousands

Zinc Cycle Components

Zn-Air Battery: Seasonal and long duration storage

Zinc Reclamation Plant

Zn-Ni Battery: Intermediate and short duration storage

Zn-MnO₂ Battery: From long duration to short duration storage

UEP Cell for Long Duration Energy Storage

Alkaline Primary D Cell

UEP Gen 1 Rechargeable Cell

	D Cell	UEP Gen 1 Cell
Capacity (140-hour discharge) / Ah	14	350
Volume / mL	56	1600
Weight / kg	0.14	3.6
Average discharge voltage / V	1.25	1.3

Zinc Cycle Development Challenges

Reclamation:

 Improving RTE of Zinc reclamation process from lower RTE acid process to higher RTE alkaline process

Manufacturing:

 Designing batteries to facilitate recycle of anode and cathode materials.

Battery technology:

- Developing low-cost, high cycle life air cathodes.
- Developing long-life ion selective separators for zinc batteries
- Improving cycle life of high DOD zinc anodes
- Developing high voltage aqueous zinc batteries: dual electrolyte, and/or water-in-salt electrolytes(WISE)

Recycle:

Improving material separation and reducing energy use.